
Red Green Refactor

Aleksander Zubala

@alekzubala
github.com/azubala

#TDDCraftConf@alekzubala

Question?
• Did you experience while TDDing:

• test didn’t work as you expected

• test passed but app functionality was broken

• test failed but app functionality was correct

• assertion was always true/false no matter the
circumstances

#TDDCraftConf@alekzubala

Red Green Refactor

#TDDCraftConf@alekzubala

Red Green Refactor
• Development in short, repeatable cycles

• Technique based on 3 steps to verify test that you’re writing

• RED: write test that fails

• GREEN: make it pass

• REFACTOR: improve your implementation

• Constantly forming hypotheses and checking them

• As you progress changes are covered

#TDDCraftConf@alekzubala

RED
• Think for a while what piece of code move your project

towards completion

• Write a short test

• tested object might not exist

• method might not be implemented

• AppCode helps to quickly implement/create missing
classes or methods

• Execute tests, check if the test is failing

#TDDCraftConf@alekzubala

GREEN
• Write a production code in your project:

• the previous test must pass

• do not focus on the quality of the code

• you can even hardcode to achieve the passing test

• Execute test, check if the test is passing

• Now you have a proof that the test is testing the right
thing

#TDDCraftConf@alekzubala

REFACTOR
• Take a deep breath, all of your tests are passing:)

• Go back to the code you’ve just written, see what can be improved

• Don’t be afraid to change the code, tests will quickly catch
mistakes

• Focus on the code duplication (DRY)

• Easy to spot architectures flaws

• No idea how to improve - iterate through couple of RDGs

• REPEAT!

#TDDCraftConf@alekzubala

Photo Stream

#TDDCraftConf@alekzubala

Photo Stream
• UI

• PhotoStreamViewController

• StreamItemViewController

• Model

• StreamItem

• StreamItemCreator

• StreamItemUploader

• StreamItemDownloader

#TDDCraftConf@alekzubala

What’s up?
Photo Stream VC

Uploader Downloader CreatorPresenter

Add Item View Did
Load

Pull To
Refresh

Actions

Let’s code!

#TDDCraftConf@alekzubala

Tasks for today

Task 1: Reload collection view after item was
created

Task 2: UX bug when creating item

Task 3: Item title

#TDDCraftConf@alekzubala

Task 1: Reload after creation
• What?

• When items was created it does not appear

• How?

• PhotoStreamViewController -> ItemCreatingDelegate

func creator(_ creator: ItemCreating, didCreateItem item: StreamItem)

• Insert newly created item to streamItems

• Reload UICollectionView (use UICollectionViewFake to test)

• Verify

• Checkout branch to compare: photo-stream-task-1

#TDDCraftConf@alekzubala

Task 2: UX bug when
creating item

• What?

• When user presses add item button and only Photo Library or only
Camera is available, action sheet with single option is presented

• How?

• Checkout class which provides available source types

• When single source available do not present action sheet

• When no source types available inform delegate about error

• Verify

• Checkout branch to compare: photo-stream-task-2

#TDDCraftConf@alekzubala

Task 3: Item title
• What?

• All stream items have the same, hardcoded title

• Implement UI which allows user to provide title of the StreamItem when
created

• How?

• Introduce additional step in StreamCreator to provide title

• You can use UIAlertController with text field to prompt user to provide title

• Modify code which creates StreamItem to use provided title

• Verify

• Checkout branch to compare: photo-stream-task-3

#TDDCraftConf@alekzubala

Task 3: Item title

#TDDCraftConf@alekzubala

Gist with instructions: goo.gl/PvST7m
Behaviour to implement:

• dismiss image picker (use ViewControllerPresenterFake)

• presented alert controller (use ViewControllerPresenterFake)

• alert controller should have:

• title: “Provide item title:”

• one action: “OK” (use AlertActionFactoryFake)

• one text field (check textFields property on UIAlertController ; use
addTextFieldWithConfigurationHandler:)

• when action is executed

• picked image should be scaled (use fake ImageManipulatorFake)

• picked image should be converted to Data (use fake ImageManipulatorFake)

• inform delegate about item creation (use TestStreamItemCreatorDelegate)

• stream item created with scaled image (check captured item in fake delegate)

• stream item created with title from text field (check captured item in fake delegate)  

Gist with instructions: goo.gl/PvST7m

#TDDCraftConf@alekzubala

Tips & Tricks
• Don’t spend too much time on red/green cycle

• Try not to achieve fully functional feature in single cycle

• Always take a second to think about refactor

• Refactor also your specs (be careful though)

• When facing code which seems not testable - break
dependencies, extract functionalities

• Swift: use protocols - easier to fake behaviours

#TDDCraftConf@alekzubala

Recap
• First test must fail, then pass, then you refactor

• Baby steps - a lot of small cycles

• Spend most time in Refactor stage

• Execute tests often: when something goes wrong, it’s
easy to identify what was the cause

• Makes you write testable code - you have to think about
design ahead

• Once feature is done, it’s covered with tests

Thanks!

